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Abstract. A wide class of exact travelling wave solutions of a generalized nonlinear
Schr̈odinger equation (GNLS) is obtained and analysed in detail. This class of solutions
incorporates bright and dark solitary waves, periodic waves, unbounded waves and other solitary
waves as asymptotic limits of the periodic or unbounded modes. The method of analysis adopted
is based on reducing the GNLS to an ordinary differential equation and studying the phase
plane of the resulting dynamical system. Application of the obtained results to the problem of
propagation of femtosecond duration pulses in nonlinear optical fibres is also discussed.

1. Introduction

The present paper deals with a generalized nonlinear Schrödinger (GNLS) equation of the
following form:

i
∂q

∂x
− s

2

∂2q

∂t2
+ q|q|2 − iα

∂3q

∂t3
+ iβ

∂

∂t
(q|q|2) + iγ q

∂

∂t
(|q|2) = 0. (1)

This equation, as well as certain versions of it, have garnered significant interest recently
[1–10]. This interest arises mainly from the fact that equation (1) has important applications
in nonlinear optics, where it has been used to describe femtosecond pulse propagation in
nonlinear optical fibres [5–10]. In this case,q is the normalized complex field envelope,x

andt are the normalized coordinate and time, respectively, while the parameters is the sign
of the group velocity dispersion (GVD) [s = −1(+1) for negative or anomalous (positive
or normal) GVD]. The coefficientsα, β and γ appearing in the GNLS are real constants
describing the third-order linear dispersion, the nonlinear dispersion and the retardation
effect on the nonlinear part of the refractive index, respectively [5–8]. Notice that in the case
α = β = γ = 0 the GNLS is reduced to the conventional form of the nonlinear Schrödinger
(NLS) equation, which is completely integrable by means of the inverse scattering transform
(IST) [11]. However, in general, equation (1) is not IST integrable, although it can be
transformed, under certain conditions, into an IST integrable system, such as the complex
modified Korteweg–deVries equation [2, 3], the higher-order NLS equation [6, 8] or the
derivative NLS equation [9].

The purpose of the present work is the presentation of a wide class of exact travelling
wave solutions of the GNLS, equation (1). The method of analysis adopted is based on
reducing equation (1) to an ordinary differential equation (ODE). This is done by using the
travelling-mode type of solution with nonlinear shifts to the carrier frequency, wave number
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and group velocity. Then, the complete study of the phase plane of the dynamical system,
whose evolution the ODE in hand describes, is performed. This so-called phase plane
analysis [12] leads to the determination of sets of initial conditions, each of which correspond
to a certain type of wave solution. In this way, both the conditions of existence and the
solutions themselves, including solitary waves (bright and dark), periodic waves, unbounded
solutions and other solitary modes as asymptotic limits of the periodic or unbounded modes,
are obtained and analysed in detail.

The present paper is organized as follows. In section 2 the GNLS is reduced to a
one-dimensional dynamical system, its stability analysis is performed and the shifts to
the frequency, wave number and group velocity are derived. Section 3 is devoted to the
presentation of both the conditions of existence and the exact travelling wave solutions of
the GNLS themselves. A detailed analysis of the integrable Hamiltonian system in hand is
given in section 4, together with several important additional features of the various types
of derived solutions. Finally, the main conclusions, both of general and special interest, are
presented in section 5.

2. Reduction of the GNLS to a one-dimensional dynamical system

In order to derive the travelling wave solutions of equation (1), we consider the gauge
transformation

q(x, t) = F(σ)f (x, t) (2)

where

f (x, t) = exp[i(κx − �t − θ0)] (3)

and

σ = t − 3x − σ0. (4)

In equations (2)–(4),F(σ) is the unknown envelope function assumed (without loss of
generality) to be real,θ0 and σ0 are the initial values of the carrier and envelope phases,
respectively, while the arbitrary real parametersκ, � and 3 have to be determined. The
parametersκ and� are related to the shifts of the original wave numberk and frequencyω,
respectively, while the parameter3−1 is the group velocity of the wave in thex–t reference
frame and is connected with the shift of the original group velocityvg (see, for example,
[1, 4, 8, 10]).

Upon substituting now the expressions (2)–(4) into equation (1), the real and imaginary
parts of the resulting equation, respectively, read

( s
2 + 3α�)F ′′ + (κ − s

2�2 − α�3)F − (1 + β�)F 3 = 0 (5)

αF ′′′ + (3 − s� − 3α�2)F ′ − (3β + 2γ )F 2F ′ = 0 (6)

where the notationF ′ = dF/dσ , F ′′ = d2F/dσ 2 andF ′′′ = d3F/dσ 3 has been used. Then,
by differentiating equation (5) once, it can be readily seen that the system of equations (5)
and (6) is consistent (i.e. the system is not overdetermined) if the following conditions hold:

κ − s
2�2 − α�3

s
2 + 3α�

= 1

α
(3 − s� − 3α�2) = λ (7)

−3(1 + β�)
s
2 + 3α�

= − 1

α
(3β + 2γ ) = µ (8)
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whereλ andµ are non-zero constants. Equations (7) and (8) can be solved recursively and
the unknown parametersκ, � and 3 can be expressed in terms of the coefficients of the
GNLS and the constantλ as follows:

� = 6α − s(3β + 2γ )

12α(β + γ )
(9)

κ = s
2λ + 3λα� + s

2�2 + α�3 (10)

3 = λα + s� + 3α�2. (11)

As can be seen, equation (9) determines the parameter�, which is constant and depends
on the coefficientsα, β andγ of the GNLS and the signs of the GVD. At the same time,
equation (10) can be seen as a dispersion relation relating the shifts� andκ, depending on
the value of the constantλ. Finally, equation (11) determines the envelope (group) velocity
in the x–t reference frame as a function of the coefficientsα, β, γ and the constantλ.

Returning now to the system of equations (5)–(6), it can be readily seen that it is
equivalent to the following equation:

F ′′ + λF + µF 3 = 0. (12)

Equation (12) can be seen as an ‘equation of motion’ of a one-dimensional dynamical
system. Indeed, by multiplying equation (12) byF ′ and integrating once, we obtain,
as constant of integration, the corresponding Hamiltonian function of the aforementioned
dynamical system. This function has the following form:

H(q, p) = p2

2
+ λ

q2

2
+ µ

q4

4
= h (13)

where the value ofh can be obtained from the initial conditionsq0 andp0. The conjugate
variablesq andp correspond to the generalized coordinateq = F and momentump = F ′,
respectively. Note that forλ = −1 andµ = +1, equation (13) is the Hamiltonian function
of the typical unforced and undamped Duffing oscillator (see, for example, [13]). It is worth
noting that once a pair of initial conditions(q0, p0) ≡ (F0, F

′
0) is chosen (i.e. amplitude and

its respective rate of change), the value ofh is readily obtained from equation (13). This
value remains constant as the corresponding solution obtained from equation (12) evolves
in the σ reference frame. Each constant value ofh connects the behaviour of the envelope
function q = F with its rate of change with respect to the travelling wave coordinate.
In general, different values ofh correspond to different schemes of evolution, that is, to
different behaviour of the envelope functions. Consequently, the set of initial conditions is
directly connected with the behaviour of the envelope functions through the corresponding
values ofh. The investigation of the dynamical behaviour of the envelope functions in the
context of equation (12) will yield the correspondence among classes of travelling wave
solutions of the GNLS equation (1) and respective sets of initial conditions.

The Hamiltonian, equation (13), represents an integrable system and its dynamical
behaviour is investigated by considering the quantitiesλ, µ andh as parameters. Following
the well known stability analysis (as far as the mechanical analogue of the ODE in hand is
concerned), we distinguish the following four cases.

Case 1: λ < 0, µ > 0. There exist three fixed points, namely two elliptic (stable)
placed at [q = ±(−λ/µ)1/2, p = 0], for h = −λ2/4µ elliptic (stable) and one hyperbolic
(unstable) placed at [q = 0, p = 0], for h = 0.

Case 2: λ > 0, µ < 0. In this case there also exist three fixed points, namely one
elliptic (stable) placed at [q = 0, p = 0], for h = 0 and two hyperbolic (unstable) placed at
[q = ±(−λ/µ)1/2, p = 0], for h = −λ2/4µ.
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Case 3: λ < 0, µ < 0. Only one fixed point exists in this case, namely a hyperbolic
(unstable) one, placed at [q = 0, p = 0], for h = 0.

Case 4: λ > 0, µ > 0. Only one fixed point exists, an elliptic (stable) one, placed at
[q = 0, p = 0], for h = 0.

For convenience, the following scale transformations are now introduced:

Q = q|µ/λ|1/2 P ≡ Q̇ ≡ dQ/d6 and H ′ = H |µ|/λ2 (14)

where6 is given by6 = σ |λ|1/2. The new Hamiltonian (omitting the prime for the sake
of simplicity) is

H(Q, P ) = p2

2
+ sgn(λ)

Q2

2
+ sgn(µ)

Q4

4
= h. (15)

In the following section, all the solutions of equation (15) will be expressed as
combinations of Jacobi elliptic functions [14] with moduli functionally connected to the
value of the Hamiltonian function. The new variable is considered as ascending in value
(i.e. representing forward-in-time processes of its dynamical analogue).

3. Exact travelling wave solutions of the GNLS

Three families of travelling wave solutions will be presented in the present section, namely
solitary wave solutions, periodic wave solutions and unbounded solutions. We proceed with
the presentation of the aforementioned solutions as follows.

3.1. Solitary wave solutions

In order to derive bright solitary wave solutions we consider case 1. In the new coordinate
system(Q, P ) the elliptic points are located at(Q, P ) = (±1, 0) and the hyperbolic point
at (Q, P ) = (0, 0). The respective values of the Hamiltonian areh = − 1

4 and h = 0.
Then, forh = 0, i.e. for the Hamiltonian value corresponding to the hyperbolic point, direct
solution of equation (15) leads to the following solution, which has two branches, expressed
in the form

Q
(bs)
± (6) = ±

√
2 sech(6). (16)

Shock wave solutions, or ‘dark’ solitary wave solutions (a term more proper if one refers
to optical propagation), can be obtained upon considering case 2. In this case, there is an
elliptic fixed point and two hyperbolic ones placed at(Q, P ) = (0, 0) and(Q, P ) = (±1, 0),
respectively. The respective values of the Hamiltonian areh = 0 andh = 1

4. Then, for
h = 1

4, i.e. for the Hamiltonian value corresponding to the hyperbolic points, equation (13)
leads to the following solution, having two branches, expressed as

Q
(ds)
± (6) = ± tanh(6/

√
2). (17)

Note that the(+) sign in equations (16) and (17), i.e. whenF > 0, corresponds to the
conventional form of the bright and dark solitary waves, respectively. On the other hand,
the (−) sign in equation (16), in the caseF < 0, corresponds to a ‘rarefaction’ solitary
wave (in the nomenclature of [12]) while the(−) sign in equation (17) corresponds to a
kink-like dark solitary wave.
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3.2. Periodic wave solutions

In order to derive periodic wave solutions we consider, at first, case 1. When− 1
4 6 h < 0,

(sub-case 11) we obtain families of solutions with two branches having the form

Q
(11)
± (6) = ±

(
2

2 − m11

)1/2

dn (6(2m11 − 1)−1/2, m11) (18)

wherem11 is the elliptic modulus. The corresponding interval of the Hamiltonian values
with respect to the modulusm11 can be found to be

−1

4
< H = h(m11) = − 1 − m11

(2 − m11)2
< 0 m11 ∈ (0, 1). (19)

On the other hand, whenh > 0 (sub-case 12), we obtain another family of solutions
which have the form

Q
(12)
± (6) = ±

(
2m12

2m12 − 1

)1/2

cn(6(2m12 − 1)−1/2, m12) (20)

wherem12 is the respective elliptic modulus. The corresponding values of the Hamiltonian
function are given by

∞ > H = h(m12) = m12(1 − m12)

(2m12 − 1)2
> 0 m12 ∈ ( 1

2, 1). (21)

Comparing the values of the Hamiltonian given by equations (19) and (21), we observe
that in the limit asm11 or m12 → 1, the Hamiltonian becomesH(m11 = m12 = 1) = 0 and
the period of the periodic waves given by equations (18) and (20) tends to infinity. In this
case, both solutions, equations (18) and (20), converge to the asymptotic solutions given by
equation (16), i.e. to the bright solitary wave solutions.

Case 2 is now under consideration. When 0< h < 1
4, there are three families of

solutions, as we will see, depending on the initial conditions. One family (sub-case 21)
corresponds to the case where|Q| 6 1. The respective solution represents a nonlinear
periodic wave of the form

Q(21)(6) =
(

2m21

1 + m21

)1/2

sn(6(1 + m21)
−1/2, m21). (22)

The respective Hamiltonian value,h, expressed as a function of the modulusm21, is given
by the following inequality:

0 < H = h(m21) = m21

(1 + m21)2
<

1

4
m21 ∈ (0, 1). (23)

Note that in the limitm21 → 1 and whenh goes to 1
4 from below, the period of the

aforementioned nonlinear periodic waves, equation (22), tends to infinity. As in the case
of the bright solitary wave, it is observed that at this infinite period limit, the dark solitary
wave (17) is born.

Case 4 is finally considered. The Hamiltonian value is solely non-negative in this case
and all the respective solutions correspond to periodic waves. After some algebra, one can
readily show that there exists a single family of solutions of the form

Q
(4)
± (6) =

[
2m4(1 − m4)

1 − 2m4

]1/2

s d(6(1 − 2m4)
−1/2, m4) (24)
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where the Hamiltonian value, as a function of the modulusm4 of the elliptic function, is
given by

0 < H = h(m4) = m4(1 − m4)

(1 − 2m4)2
< ∞ m4 ∈ (0, 1

2). (25)

Note that for small values of the Hamiltonian (i.e.m4 ≈ 0), the solutions given
by equation (24) behave like sin(6) as expected, that is, the modes exhibit a harmonic
behaviour for small values ofh.

3.3. Unbounded solutions

We consider first case 2. When 0< h < 1
4, there exist two other families of solutions,

when−1 − √
2 6 Q < −1, and 1< Q 6 1 + √

2 (sub-cases 22±). They are of the form

Q
(22)
± (6) = ±

(
2

1 + m22

)1/2

ns(6(1 + m22)
−1/2, m22) (26)

wherem22 is the new elliptic modulus. The Hamiltonian value,h, is in the same interval
as in sub-case 21 (see equation (23)) and, as a function of the modulusm22, is given by

0 < H = h(m22) = m22

(1 + m22)2
<

1

4
m22 ∈ (0, 1). (27)

In the same case (2), whenh > 1
4, two other families of nonlinear unbounded modes

exist (sub-cases 24±). Their form is found to be

Q
(24)
± (6) = ±

(
1

2m24 − 1

)1/2

sc(6(2(2m24 − 1))−1/2, m24) dn (6(2(2m24 − 1))−1/2, m24).

(28)

The Hamiltonian values, on the other hand, are in the interval

∞ > H = h(m24) = 1

4(2m24 − 1)2
>

1

4
m24 ∈ ( 1

2, 1). (29)

Note that in the limitm24 → 1 (h goes to 1
4), inspection of equation (28) shows that

this family of solutions converge to the dark solitary wave solutions given by equation (17).
Finally, in case 2, for negative Hamiltonian values,h < 0, there are two additional

families of solutions (sub-cases 23±). Their behaviour is similar to that of those in sub-
cases 22±, differing only in their functional form, that is

Q
(23)
± (6) = ±

(
2

1 − 2m23

)1/2

ds (6(1 − 2m23)
−1/2, m23). (30)

The HamiltonianH , on the other hand, expressed as a function of the modulusm23, is
given by

−∞ < H = h(m23) = −m23(1 − m23)

(1 − 2m23)2
< 0 m23 ∈ (0, 1

2). (31)

Note that in the limitm23, m22 → 0, the Hamiltonian becomesh(m23 = m22 = 0) = 0
and inspection of equations (26) and (30) shows that both families of unbounded modes
converge, as expected, to the following limiting modes:

Q
(2t)
± (6) = ±

√
2csc(6). (32)
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On the other hand, in the limitm22, m24 → 1, the Hamiltonian value goes to14 too.
Inspection of equations (26) and (28) shows that the family which corresponds to the former
converge to modes given by

Q
(2s)
± (6) = ± coth(6/

√
2) (33)

while the respective family of the latter equation converges to the dark solitary wave
solutions given by equation (17).

We consider now case 3. The sole hyperbolic point in this case is placed at(Q, P ) =
(0, 0). It is readily evident from equation (15) that unbounded solutions exist for all values
of the Hamiltonianh ∈ (−∞, +∞). Specifically, for the initial conditionQ(6 = 0) = 0,
one can obtain the following families of solutions (sub-cases 31±):

Q
(31)
± (6) = ±(1 − 2m31)

−1/2 1 − cn(6(2(1 − 2m31))
−1/2, m31)

sn(6(2(1 − 2m31))−1/2, m31)
(34)

with the Hamiltonian value in the following interval

1

4
< H = h(m31) = 1

4(1 − 2m31)2
< ∞ m31 ∈ (0, 1

2). (35)

For 0< h < 1
4, and for the initial conditionQ(6 = 0) = 0, one obtains the following

families of branches (sub-regions 32±, respectively adjacent to sub-regions 31±):

Q
(32)
± (6) = ±

(
2(l − m32)

2 − m32

)1/2

sc(6(2 − m32)
1/2, m32) (36)

where the modulusm32 of the elliptic function involved and the Hamiltonian value are
related through the following expression:

1

4
> H = h(m32) = 1 − m32

2(2 − m32)2
> 0 m32 ∈ (0, 1). (37)

Note that ash → 1
4(m31, m32 → 0) both expressions (34) and (36) converge to the

modes given by

Q
(0)
± (6) = ± tan(6/

√
2). (38)

Note that the solution (38) can be directly obtained via equation (15) by settingh = 1
4.

Finally, in case 3, forh < 0, the following two branches of solutions can be obtained:

Q
(33)
± (6) = ±

(
2(1 − m33)

2m33 − 1

)1/2

nc(6(2m33 − 1)1/2, m33) (39)

for the initial condition

Q(6 = 0) = ±
(

2(1 − m33)

2m33 − 1

)1/2

.

In this case, the Hamiltonian value,h, expressed as a function of the modulusm33, is given
by

−∞ < H = h(m33) = −m33(1 − m33)

(2m33 − 1)2
< 0 m33 ∈ ( 1

2, 1). (40)

In the limiting caseh → 0−(m33 → 1−) the solutions in equation (38) converge
to the modesQ(1)

± (6) = ±(2ε)1/2 cosh(6), where ε = 1 − m33 ' 0. On the other
hand, whenh → 0+(m32 → 1−) the solutions in equation (35) converge to the waves
Q

(1)
± (6) = ±(2ε)1/2 sinh(6), whereε = 1 − m32 ' 0. From the above discussion it is

readily seen that in the limiting casesh → 0+, or h → 0− the solutions (36) and (39) do
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not converge to asole asymptotic mode. Nevertheless, ath = 0 there exists anisolated
solution that differs from the aforementioned asymptotic ones ash → 0±. This solution,
which can be directly obtained from equation (15) by settingh = 0, is given by

Q
(1)
± (6) = Q0

cosh(6) ± sign(Q0)(1 + Q2
0/2)1/2 sinh(6)

(41)

and corresponds to the initial conditionQ(6 = 0) = ±Q0 in either case.

4. Dynamics associated with the travelling wave solutions

It is convenient to represent now the solutions obtained in the previous section in a
unified form, directly connected to the four cases of section 2. This can be easily done
by considering the dynamics associated with these cases separately and illustrating the
correspondence between the phase plane curves and the derived solutions by means of
certain figures. As will be seen, this unification of the results will lead to some additional
features of the travelling wave solutions of the GNLS. In this way, we proceed with the
presentation of the above-mentioned cases as follows.

Figure 1. Case 1(λ < 0, µ > 0): phase plane curves for various normalized Hamiltonian
values andQ(6) diagrams. Sub-regions:(11±) − 1

4 < h 6 0, (12) 0< h; all bounded modes.
The solitary wave solution corresponds to the figure-eight separatrix and the full curve in the
respective diagrams. The arrows correspond to an increasing travelling wave coordinate6.

Case 1. In the phase plane diagram of figure 1 various phase curves which correspond
to case 1 are shown, together with the hyperbolic fixed pointY and the pair of elliptic fixed
points E− and E+. Four branches correspond to the hyperbolic pointY : two (U+ and
U−) are outgoing in opposite directions. These are the (well known in dynamics) unstable
branches. The other two branches (S− andS+) are ingoing and they represent the so-called
stable branches. The branchesU+ andS+ coincide, because the system is integrable; they
form a separatrix (the thickly dotted line surrounding the pointE+). In the same way the
coinciding branchesU− and S− form a separatrix too. These separatrices correspond to
the asymptotic bright solitary wave solutions, equation (16). As expected from the theory
of dynamical systems, the separatrices separate regions of qualitatively different motions in
the phase plane, namely the regions 11+, 11− and 12.
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The phase curves in the regions 11− and 11+ surround the elliptic pointsE− andE+,
respectively, for several values of the Hamiltonian in the interval− 1

4 < h < 0. These
phase curves correspond to periodic solutions, equation (18), of different period. For the
value ofh being infinitesimally close to1

4 (m11 → 0−), that is, in the immediate vicinity
of the elliptic fixed point, the period is finite(= 2π), though the corresponding amplitude
is infinitesimally small. The associated wave solutions describe an almost linear wave, or
in other words a continuous wave (cw) background solution exists for the original GNLS
problem. Ash increases, the elliptic modulusm11 increases also and the nonlinear character
emerges: increasing amplitude is accompanied by increasing period. This period tends to
infinity when h → 0−(m11 → 1−), and thus the asymptotic solution (bright solitary wave)
is obtained ath = 0.

The phase curves in region 12(h > 0), on the other hand, surround both separatrices.
Several periodic solutions of the type which equation (20) provides are shown. Ash

increases (m12 decreases) the period decreases and in the limith → ∞ the period approaches
the value 2π . Oppositely, whenh → 0+(m12 → 1+), the period tends to infinity and the
asymptotic solitary wave solution is obtained. In the vicinity of the latter, the period of the
nonlinear waves of region 12 is twice the period of the corresponding ones (same value of
the respective moduli) of region 11, a result consistent with the nonlinear pendulum picture
of a nonlinear oscillator.

It should be noted that the periodic character of the nonlinear waves in regions 11 and
12 and the discontinuity in the periodicity caused by crossing the separatrix is clear in
the Q(6) diagrams in figure 1: two cases are shown forh = 0.03 (large broken curve)
andh = −0.03 (fine broken curve). The thick full curve represents the asymptotic bright
solitary wave solution.

Figure 2. Case 2(λ > 0, µ < 0): phase plane curves for various normalized Hamiltonian
values andQ(6) diagrams. Sub-regions: (21) 0< h 6 1

4 , bounded modes;(22±) 0 < h 6 1
4 ,

unbounded modes;(23±) h 6 0, unbounded modes;(24±) 1
4 < h, unbounded modes. The

separatrix branches between the sub-regions 21 and 24± correspond to regular dark solitary
wave solutions, while the ones between the sub-regions 24± and 22± correspond to ‘spiky’
(unbounded at6 = 0) wave forms. The full curve in theQ(6) diagram represents the regular
dark solitary wave solutions, while the spiky one (not shown) has the same6 = ±1 asymptotic
lines andQ(6 → 0±) → ±∞. The arrows correspond to an increasing travelling wave
coordinate6.
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Case 2. In figure 2 the phase diagram associated with case 2 is shown, together with
the elliptic fixed pointE (h = 0) at (Q, P ) = (0, 0) and the hyperbolic ones,Y− and
Y+(h = 1

4), at (Q, P ) = (±1, 0). As far as the periodic wave solutions associated with
this case are concerned, it is evident that they are represented as phase curves surrounding
the elliptic fixed pointE. One such wave solution, corresponding to the expression in
equation (22), is shown forh = 0.23 (broken curve) in theQ(6) diagram in figure 2. Note
that for each initial point(−1 < Q0 < 1, P0 = 0) there corresponds a value ofh in the
interval 0< h < 1

4. At the valueh = 0, we haveQ = 0 andm21 = 0. In this case the
system is at rest. For a small variation of the value ofh = 0 the periodic nonlinear waves
(22) are born whose period increases ash → 1

4.
Let us consider now the unbounded wave solutions associated with case 2. At first,

as far as the solutions given by equation (26) are concerned (sub-case 22), it is seen that
they represent unbounded modes of finite ‘period’ (multiplier of6). The latter increases as
m22 (or h) increases and tends to infinity asm22 → 1(h → 1

4). This ‘period’ has basically
the meaning of a transition time, since the modes exhibit an explosive nature in a finite
6-interval of the order of this ‘period’, as is evident from theQ(6) diagrams of figure 2
(densely and thickly dotted curves forh = 0.23). Nevertheless, if other physical factors,
not incorporated in the model in hand (a low level of dissipation, for example) come into
play, this explosive nature can merely be modified to become a spiky behaviour. In such
a case the separated explosive branches will communicate through sharp, almost vertical,
transitions.

The family of solutions appearing in equation (28), which represent nonlinear unbounded
modes as well, is the product of two Jacobi functions of the same period. Thus,Q

(24)
± (6)

has a finite ‘period’, which is equal to half the period of these functions. In theQ(6)

diagram in figure 2 one such solution is shown forh = 0.28 (finely and densely dotted
curves). Several phase curves are also shown whose finite ‘period’ decreases ash increases.
The unbounded modes for this interval of Hamiltonian values exhibit a compression–
decompression behaviour. They differ, however, from those of sub-case 22 (equation (26))
since the latter do not pass through the valueQ = 0, while the former do. On a similar
basis, extraneous factors may cause bridging at the two (positive and negative) branches
leading finally to a spiky behaviour twice as frequent as the one for sub-case 22.

As was shown in the previous section, the nature of the unbounded wave solutions
in the regions 23± (equation (30)) is identical to that of the adjacent regions 22± (see
figure 2). Several phase curves in regions 23± are shown in the phase diagram in figure 2.
They represent modes whose finite ‘period’ increases ash → 0 from negative values. As
far as the limiting solutions given by equation (32) are concerned, they correspond to the
sparsely dotted curves in the phase diagram of figure 2. Of course, these limiting solutions
are not classified as asymptotic ones, since they exhibit a finite ‘period’. However, the
limiting modes described by equation (33), although they are unbounded ones, can also be
classified as solitary waves. This is true because (like those of equation (17)) they lead
to travelling wave solutions to the original GNLS problem and exhibit a localized (in6)
transition from the asymptotic state−1 (in the limit 6 → −∞) to the asymptotic state+1
(in the limit 6 → +∞) (see for example [15]). Moreover, their period is infinite. They
may be characterized as explosive or implosive modes acting on a ‘quiescent’ background
(Q ≈ ±1) within a narrow interval close to6 = 0. If extraneous factors are permitted
to act, the two quiescent states can then be bridged through a spiky behaviour during their
transit through6 = 0. That is, in such a case, the ‘shock wave’ nature is preserved,
though through a rather spiky transition instead of a smooth transition as compared to those
described by equation (17).
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Taking into account the previous discussion, let us now take a closer look at figure 2.
For the sake of clarity, only the asymptotic solutions that correspond to the regular dark
solitary wave are shown (thick full curve) in theQ(6) diagram in this figure. The phase
curves which correspond to the hyperbolic fixed points (equations (17) and (33)) form the
separatrices (densely dotted curves in the phase diagram of figure 2). The branchesU+

− ,
S+

+ and U−
+ , S−

− , which separate region 21 from regions 24± (upper and lower), coincide
with the dark solitary wave solutions (equation (17))Q

(ds)
± , respectively. The remaining

branches separate regions 24± from regions 22±. The outgoing and ingoing curves,U+
+

andS+
− , respectively (from and towards the hyperbolic pointY+), correspond to theQ(2s)

+
solution of equation (33). Similarly the branchesS−

+ and U−
− correspond to theQ(2s)

−
solution of the same equation representing solitary modes of similar nature as we already
have pointed out. It is also worth mentioning that forh = 0 one gets both the elliptic
fixed point, E [(Q, P ) = (0, 0)] as well as the aforementioned non-asymptotic limiting
phase curves (sparsely dotted curves, equation (32)) which correspond to initial conditions
(Q0, P0) = (0, ±√

2). Since these curves do not represent separatrices, one can go from
one region to the other (by continuously varying the value ofh from negative to positive
values, or vice versa) without affecting the character of the modes involved.

Figure 3. Case 3(λ < 0, µ < 0): phase plane curves for various normalized Hamiltonian
values andQ(6) diagrams. Sub-regions:(31±) 1

4 < h, (32±) 0 < h 6 1
4 , (33±) h 6 0; all

unbounded modes. The separatrices correspond to an isolated ‘spiky’ solitary mode forh = 0.
This mode is shown by the thick curve in theQ(6) diagram. The arrows correspond to an
increasing travelling wave coordinate6.

Case 3. In figure 3, the phase diagram associated with case 3 is presented. As was
shown in the previous section, the modes of either sub-cases 31± or sub-cases 32± are
unbounded and exhibit an explosive–implosive character in a finite6-interval. Several
phase curves of these sub-cases appear in the phase diagram of figure 3. Additionally,
in the Q(6) diagram of figure 3, these modes are presented, forh = 0.01, by the thinly
dotted curves. As we have already pointed out in case 2, extraneous factors may cause
the conversion of these seemingly unnatural modes into a spiky excitation through bridging
maxima with minima.

As far as the unbounded solutions in equation (39) are concerned (corresponding to
the two symmetric sub-regions 33±), they are presented in theQ(6) diagram of figure 3
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by several phase curves as well. In theQ(6) diagram a single case forh = −0.07 is
represented by thickly dotted curves. These modes, as in case 2, exhibit a compression–
decompression behaviour in a finite6-interval, over a finiteQ-background (Q never goes
to zero) and can be bridged towards a spiky succession of compressions and decompressions
through almost vertical transitions, if extraneous factors can come into play.

The limiting solutions (form31, m32 → 0) appearing in equation (38) are also presented
in the phase diagram of the same figure and are denoted by the two symmetric, sparsely
dotted curves. These modes do not represent asymptotic solutions; they are simply
transitional modes that conform to the continuity requirement of equations (34) and (36).
On the other hand, the solutions given by equation (41) do represent asymptotic solutions
(as discussed in the previous section) and thus they are solitary waves. This is true because
they correspond to travelling waves in the original GNLS problem and their transition from
the asymptotic state 0 (in the limit6 → −∞) to the same asymptotic state 0 (in the limit
6 → +∞) is essentially localized in6. Moreover, we note that these waves are of infinite
period.

In figure 3 these solitary modes have the form of the separatrices that separate subregions
33± from 32±. In theQ(6) diagram (thick full curve) their seemingly unnatural character
can rather be described as a sudden (i.e. it takes place in a finite6-interval) explosion or
implosion emerging from the quiescent stateQ(6) = 0. Bridging maxima with minima
will eventually lead to a behaviour characterized by a sudden single spike. The respective
curves in the phase diagram in figure 3 consist of two pairs of branches, namely theS−,
U+ and S+, U− pairs. The stable(S) branches are ingoing towards the hyperbolic point
Y , while the unstable ones(U) are outgoing. These branches form the separatrices that
separate the phase plane into sub-regions where the modes are qualitatively different. Their
asymptotic character is in accordance with the solitary nature of the modes they represent.

Figure 4. Case 4(λ > 0, µ > 0): phase plane curves for various normalized Hamiltonian
values andQ(6) diagrams for the sole region (4): 06 h. All modes correspond to bounded
periodic waves. The arrows correspond to an increasing travelling wave coordinate6.

Case 4. In the phase plane diagram of figure 4 several phase curves which correspond
to case 4 are shown, together with the sole elliptic fixed pointE. As is readily seen, these
curves represent periodic orbits (in the mechanical sense); they surround the elliptic point
and correspond to periodic wave solutions (equation (24)) of the original GNLS equation.
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A single periodic wave forh = 1.675 is also shown in the respectiveQ(6) diagram.

5. Discussion and conclusions

In the present paper the class of the exact travelling wave solutions of the GNLS equation has
been comprehensively derived and thoroughly studied. The obtained results are applicable
to the problem of femtosecond pulse propagation in nonlinear optical fibres. The method
of analysis adopted, which is based on analysing the problem in hand in the framework
of the Hamiltonian dynamics, is capable of treating a whole class of nonlinear travelling
wave modes. This class of solutions incorporates bright and dark solitary waves, periodic
waves, unbounded solutions and other solitary modes as asymptotic limits of the periodic
or unbounded modes derived and analysed in this work.

Using the travelling mode type of solution with nonlinear shifts to the carrier frequency,
wave number and group velocity, the GNLS was reduced to a second-order ODE. This
ODE resembles the one describing the dynamics of the unforced and undamped Duffing
oscillator and its coefficients depend on the fibre properties. Thus, the study of the GNLS
is reduced to the study of an integrable dynamical system. By completely analysing
the aforementioned ODE, several conclusions concerning the problem under consideration
were reached. Additionally, important remarks of far more general interest for physical
systems obeying the generalized Duffing Hamiltonian (or even for systems with Hamiltonian
behaviour in general) were also made. In the following, both special conclusions and general
remarks are summarized.

5.1. General remarks

(1) Each of the derived exact solutions represents a two-parameter family of solutions, in the
sense that it corresponds to a specific valueh of the Hamiltonian function (equation (15))
and can be expressed in terms of the parameterλ (equation (7)). This can be easily
seen by using the following example: Consider the dark solitary wave solution (case 2)
corresponding to the valueh = 1

4. Then, using the expression for the envelope function,
equation (17), together with equations (2)–(4) and (8), the dark solitary wave solution of the
original GNLS problem can be expressed in terms of the parameterλ and the coefficients
α, β, γ of the GNLS as follows:

q(t, x) = ±
(

λα

3β + 2γ

)1/2

tanh

[(
λ

2

)1/2

(t − 3x − σ0)

]
exp[i(κx − �t − θ0)]. (42)

In addition, in order to obtain a specific type of solution, the validity of several conditions
is also required. For example, as far as the case of the dark solitary wave solution is
concerned, the free parameterλ must be positive and the parameterµ must be negative
(necessary conditions for case 2). Finally, the initial amplitude corresponding to the solution
(42) must be given by

q(t, 0) = ±
(

λα

3β + 2γ

)1/2

tanh

((
λ

2

)1/2

(t − σ0)

)
exp[−i(�t + θ0)] (43)

and the initial phase must be fixed according to equations (9)–(11).
(2) All the asymptoticsolutions are characterized by infinitely long period. They are

basically all solitary modes and correspond to separatrices on the phase plane (or on the
Poincaŕe plane of sections for a system of two degrees of freedom). The separatrices separate
regions of the phase plane characterized by a qualitatively different type of behaviour. They
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separate regions where the behaviour is bounded and periodic from regions where the motion
is unbounded, as in case 2 (figure 2). They may separate regions of periodic behaviour but
with different localizations and periodicities, as in case 1 (figure 1). They may finally
separate regions of unbounded non-periodic behaviour with different localization, as in
case 3 (figure 3). However, there may exist solitary modes (in the sense of having infinite
period and being localized) which are not necessarily asymptotic. We will encounter such
a case in what follows.

(3) The unbounded wave solutions (encountered in cases 2 and 3) may seem to
correspond to states that are not physically realizable (or, at least, not all). However,
there has been no conclusive argument in the literature concerning the realizability of the
unbounded modes (see, for instance, [16]). On the contrary, there has been some evidence
for the possibility of their existence in other disciplines of applied physics where equations
of the nonlinear Schrödinger family are the working model: to mention just one, phase
transitions in systems far from equilibrium (see, for example, [17]). Therefore, we feel
reluctant in totally rejecting these unbounded modes. After all, the notion ‘unbounded’ has
a rather relative value in a realistic, bounded system where other mechanisms capable of
cutting off a limitlessly growing mode (optical signal if one specializes in the problem in
hand) may well have been ignored in the first place.

(3.1) For sub-cases 22 (or 23) and 24 if physical factors not incorporated in the model
in hand (a low level of dissipation, for example) come into play, this explosive nature of
the respective modes can merely be modified to become a spiky behaviour. Thus, in such
a case the separated explosive branches will communicate through sharp, almost vertical,
transitions. The difference between sub-case 22 (or 23) and 24 merely lies in the passing
of the respective amplitude of the latter through zero in the ideal (no extraneous factors
invoked) case.

(3.2) The separatrices that separate the sub-regions 22 and 24 correspond to asymptotic
solutions. Although unbounded at6 = 0, they can safely be characterized as solitary
modes: they merely lead to travelling wave solutions to the original GNLS problem and
exhibit a localized (in6) transition from the asymptotic state−1 (in the limit 6 → −∞)
to the asymptotic state+1 (in the limit 6 → −∞). Moreover, their period is infinite. As
far as their physical content is concerned, they are explosive or implosive modes acting on
a ‘quiescent’ background(Q ≈ ±1) within a narrow interval close to6 = 0. If extraneous
factors are permitted to act, the two quiescent states can then be bridged through a spiky
behaviour during their transit through6 = 0. Therefore, they can be characterized as ‘spiky
shock waves’ in contrast to the regular ones that correspond to the separatrices between the
sub-regions 21 and 24.

(3.3) In case 3 all the modes are unbounded and, as in case 2, they may lead to spiky
modes as explained earlier. The separatrices that separate sub-regions 33 from sub-regions
32, on the other hand, correspond to theisolated solutions for the caseh = 0. They
cannot be considered as the common asymptotic limit of the respective families of modes
as h → 0±, since such a limit does not exist besides the sole hyperbolic point they are
passing through. The separatrices of case 3, therefore, are physically realizable only as
isolated and not asymptotic modes. However, they are indeed solitary modes because
they correspond to travelling modes in the original GNLS problem exhibiting a localized
transition from the asymptotic state 0 (in the limit6 → −∞) to the same asymptotic state
0 (in the limit 6 → +∞). If extraneous factors are invoked this transition will merely be
reduced to a single spike. They may, therefore, be characterized as ‘solitary spikes’.

(4) As far as the stability of the bounded solutions (cases 1, 2.1 and 4) is concerned, one
may simultaneously apply an amplitude and phase modulation (i.e. perturbing the elliptic
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function as well as its initial phase) on the solutions found and feed the result back into
equation (1). This procedure is quite common in cases encountered in the literature, such
as the study of the modulational instability of the original GNLS, equation (1), [18] and
certain versions of it(α = γ = 0) [19]. Fully examining the stability of the derived bounded
solutions is beyond the scope of this work. However, it can be readily shown that in the
simple case of a sole localized amplitude modulation,δQ(6), the linearized equation that
δQ obeys is

d2δQ

d62
+ [sgn(λ) + Q2

0(6) sgn(µ)]δQ = 0 (44)

whereQ0(6) are the respective bounded travelling wave solutions. This is a Hill’s-type
equation, different for each sub-case which the solutionQ0 represents. It is well known [20]
that there exist stability intervals associated with the Hill equation whose structure depends
upon the value of the modulus,m, which enters intoQ0. Since the modulusm is directly
related to the value of the Hamiltonian function, the stability question is closely connected
to the value of the latter, and the functional form ofQ0, of course. A complete study of
equation (44) is, by itself, a very interesting problem and a subject of future investigation.

5.2. Special conclusions

(1) The parameter which parametrizes the various families of nonlinear modes in their
respective sub-cases is the normalized Hamiltonian value (equation (13)). This parameter
is directly related to the initial conditions(F ′

0, F
′
0) of the pulse. On the other hand,

the parameters that distinguish one case from another areλ and µ. The former is a
free parameter, which determines the nonlinear shifts in wave number and velocity (see
equations (10)–(11)), while the latter is a constant related to the coefficients of the GNLS
(see equation (8)). The parameterλ is allowed to take both positive and negative values,
while the sign of the parameterµ depends on the signs of the coefficients of the GNLS
equation. However, in the particular problem of femtosecond pulse propagation in optical
fibres, the parametersβ andγ are always positive [5–10]. Thus, the sign of the parameter
µ depends solely on the sign of the coefficientα, which is proportional to the third-order
linear dispersion∂3k/∂ω3. For graded index fibres this parameter is always positive, and
thusµ is negative. On the other hand, for quadruple-clad fibres, it can take both positive
and negative values, depending on the operation wavelength (∂3k/∂ω3 > 0 for λ . 1.45µm
and∂3k/∂ω3 < 0 for λ & 1.45 µm) [10].

(2) The bright or dark solitary wave formation is connected with the necessary conditions
µ < 0 (case 1) orµ > 0 (case 2), respectively. According to the aforementioned discussion,
it can readily be concluded that the possibility of bright (dark) solitary wave formation is
predicted for∂3k/∂ω3 < 0 (∂3k/∂ω3 > 0). It is important to mention that there is no
imposition concerning the value of the parameters. This means that the expressions in
equations (16)–(17) form families of solitary wave solutions, which can be supported in
both the normal(s = +1) and the anomalous(s = −1) dispersion regimes. Notice that
this result has been reported elsewhere [1, 9] and stands in the case of propagation at the
so-called zero dispersion point (corresponding to zero GVD, ors = 0) as well [10].

(2.1) As far as the anomalous dispersion regime is concerned, the possibility of dark
pulse propagation is in sharp contrast with the conventional form of the NLS, or versions
of the GNLS arising forα = γ = 0 [21, 22], where dark soliton (or solitary wave) solutions
hold solely in the normal dispersion regime. It is also noted that since the derived dark
solutions are exact solutions to a non-integrable system, i.e. equation (1), are in principle
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different from either exact solutions of an integrable system [21], or perturbative solutions
of a non-integrable system [22].

(2.2) An analogous result holds in the case of the normal dispersion regime as well,
where the possibility of bright solitary wave propagation is predicted. In addition, it is
worth noting that the derived bright solutions in equation (16) exhibit a constant phase,
determined by equations (3) and (9)–(11). Thus, they are in principle different than other
bright solutions (valid solely in the anomalous dispersion regime) of versions of the GNLS
arising forα = γ = 0 [23, 24], exhibiting ana priori assumed phase-modulation.

(3) For case 1, the minimum value of the normalized Hamiltonian value is− 1
4. The

bright solitary wave solution corresponds toh = 0 and all the respective mode solutions of
the GNLS are bounded periodic nonlinear waves. On the other hand, in case 2 solutions
exist for all values ofh. Nevertheless, the allowable values of the Hamiltonian in order
boundedmodes to exist are 06 h 6 1

4 with a dark solitary wave solution corresponding to
h = 1

4. On the other hand, for cases 3 and 4, solutions exist for all the non-negative values
of H(H > 0). They are all unbounded, for case 3, while, for case 4, they are all bounded
periodic waves.

(4) In the problem of femtosecond pulse propagation in optical fibres, an additional
term of dissipative character may also be included in the RHS of equation (1). This so-
called Raman term, which is of the formδq∂/∂t [|q|2], whereδ is a real constant, describes
the self-induced Raman effect [6–7], which gives rise to a frequency down-shift of bright
solitons [6], or leads to a temporal self-shift of dark solitons [25]. The Raman term has
not been included in equation (1) because conditions have been found for which it can be
neglected [7] or compensated through various amplification schemes [26–28]. It should be
noted that inclusion of the Raman term in the GNLS [18] would lead to a contribution
of the form +2δF 2F ′ in equation (5). In such a case, the Hamiltonian structure which
characterizes the family of the travelling wave solutions ceases to exist. In other words, the
system of equations (5)–(6) cannot be made consistent any more via a set of consistency
relations such as equations (7)–(8). Localized travelling wave solutions (exact) cannot be
found if the Raman term is included. Nevertheless, the analysis presented in the present
work is valid under the assumption that the normalized power of the envelope, defined as
P = F 2, satisfies the following inequality:

2δ

|1 + β�| ln

(
dP

dσ

)
� 1 (45)

where � is given by equation (9). This condition for the envelope power is actually
a requirement for minimization of the dissipative effect the Raman term may have on
travelling wave propagation.
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